Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism.

نویسندگان

  • A Ernst
  • T Black
  • Y Cai
  • J M Panoff
  • D N Tiwari
  • C P Wolk
چکیده

Mutants of Anabaena sp. strain PCC 7120 that are incapable of sustained growth with air as the sole source of nitrogen were generated by using Tn5-derived transposons. Nitrogenase was expressed only in mutants that showed obvious morphological signs of heterocyst differentiation. Even under rigorously anaerobic conditions, nitrogenase was not synthesized in filaments that were unable to develop heterocysts. These results suggest that competence to synthesize nitrogenase requires a process that leads to an early stage of visible heterocyst development and are consistent with the idea that synthesis of nitrogenase is under developmental control (J. Elhai and C. P. Wolk, EMBO J. 9:3379-3388, 1990). We isolated mutants in which differentiation was arrested at an intermediate stage of heterocyst formation, suggesting that differentiation proceeds in stages; those mutants, as well as mutants with aberrant heterocyst envelopes and a mutant with defective respiration, expressed active nitrogenase under anaerobic conditions only. These results support the idea that the heterocyst envelope and heterocyst respiration are required for protection of nitrogenase from inactivation by oxygen. In the presence of air, such mutants contained less nitrogenase than under anaerobic conditions, and the Fe-protein was present in a posttranslationally modified inactive form. We conclude that internal partial oxygen pressure sufficient to inactivate nitrogenase is insufficient to repress synthesis of the enzyme completely. Among mutants with an apparently intact heterocyst envelope and normal respiration, three had virtually undetectable levels of dinitrogenase reductase under all conditions employed. However, three others expressed oxygen-sensitive nitrogenase activity, suggesting that respiration and barrier to diffusion of gases may not suffice for oxygen protection of nitrogenase in these mutants; two of these mutants reduced acetylene to ethylene and ethane.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterocyst development and diazotrophic metabolism in terminal respiratory oxidase mutants of the cyanobacterium Anabaena sp. strain PCC 7120.

Heterocyst development was analyzed in mutants of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 bearing inactivated cox2 and/or cox3 genes, encoding heterocyst-specific terminal respiratory oxidases. At the morphological level, the cox2 cox3 double mutant (strain CSAV141) was impaired in membrane reorganization involving the so-called honeycomb system that in the wild-type ...

متن کامل

Control of Nitrogenase mRNA Levels by Products of Nitrate Assimilation in the Cyanobacterium Anabaena sp. Strain PCC 7120.

Nitrate inhibited nitrogenase synthesis and heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Inhibition of dinitrogen fixation by nitrate did not take place, however, in nitrate reductase-deficient derivatives of this strain. Hybridization of total RNA isolated from cells grown on different nitrogen sources with an internal fragment of the nifD gene showed that regulat...

متن کامل

A TolC-like protein is required for heterocyst development in Anabaena sp. strain PCC 7120.

The filamentous cyanobacterium Anabaena sp. strain PCC 7120 forms heterocysts in a semiregular pattern when it is grown on N2 as the sole nitrogen source. The transition from vegetative cells to heterocysts requires marked metabolic and morphological changes. We show that a trimeric pore-forming outer membrane beta-barrel protein belonging to the TolC family, Alr2887, is up-regulated in develop...

متن کامل

Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120.

Heterocysts, formed when filamentous cyanobacteria, such as Anabaena sp. strain PCC 7120, are grown in the absence of combined nitrogen, are cells that are specialized in fixing atmospheric nitrogen (N(2)) under oxic conditions and that transfer fixed nitrogen to the vegetative cells of the filament. Anabaena sp. mutants whose sepJ gene (open reading frame alr2338 of the Anabaena sp. genome) wa...

متن کامل

DevT (Alr4674), resembling a Ser/Thr protein phosphatase, is essential for heterocyst function in the cyanobacterium Anabaena sp. PCC 7120.

Heterocyst-forming cyanobacteria are able to perform oxygenic photosynthesis and nitrogen fixation simultaneously in the same filament, by restricting the highly O(2)-sensitive nitrogenase to specialized cells, the heterocysts. A remarkable change in morphology and metabolism accompanies the differentiation of heterocysts, which only occurs when no source of combined nitrogen is available. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 174 19  شماره 

صفحات  -

تاریخ انتشار 1992